Optically Addressed Spatial Light Modulator - NIR

FEATURES

Liquid Crystal *Optically Addressed Spatial Light Modulator* with a continuous photosensitive substrate at the place of pixels.

- Photosensitive substrate in the NIR
- Spatial resolution 80μm
- Transmission and reflection mode
- Phase or amplitude modulation
- Response time 15ms
- Clear aperture 20mm

DESCRIPTION

The OASLM-NIR, also called a Light-Valve (LV), is a spatial light modulator made with a photoconductive layer of semi-insulating GaAs instead of pixels.

The addressing is optically made by shining the GaAs side with light in the NIR region. Optimal sensitivity is in the range 800 - 2000nm.

The OASLM-NIR is mounted in a compact aluminum housing, with an SMA connector for electrical driving.

The optical addressing can be performed with any external light in the wavelength range of 800 - 2000nm.

The refractive index of the device is directly related to the intensity profile of the addressing light.

Spectral transmission is shown from 850 to 1850 nm; light is linearly polarized along the LC director.

The device can modulate the reading light in phase or intensity (if placed in between crossed polarizers).

The OASLM-NIR also provides a Kerr-like optical response with a tunable nonlinear coefficient.

APPLICATIONS

- Wavelength conversion
- Adaptive Holography and Interferometry
- Nonlinear Optics
- Optical wave-mixing
- Laser beam shaping
- SWIR and LWIR imaging

Examples

- Wavelength conversion
- Opto-acoustic sensing
- Beam cleanup
- Vibrometry

HOASYS OASLM-NIR

Jan 2025

Optically Addressed Spatial Light Modulator - NIR

VIEWS

DEVELOPMENT KIT

A development kit includes the OASLM-NIR , its electrical driver and its specifically designed light projector.

Software for controlling the driver and for generating the optical masks are provided with the kit.

CHARACTERISTICS

Item OASLM - NIF			
Operating mode	Transmission		
Power consumption (V=20 Vrms, f=1kHz)	<80 mW		
AR coating	NIR (or custom wavelength)		
Optical transmission (λ=1030nm)	>0.65		
Transverse spatial resolution	80 μm		
Clear aperture	20 mm		
LC refractive index (λ=632nm)	1.74 – 1.52 (T=20 °C)		
LC thickness	$9\pm0.05~\mu m$		
Photoconductive layer refractive index (λ=632nm)	3.86		
Weight	70 gr		
Dimensions	40 mm x 40 mm x 20 mm		

RECOMMENDED OPERATING CONDITIONS*

	Minimum	Typical	Maximum	Units
Supply AC** voltage	7	20	28	Vrms
Driving voltage frequency	30	1k	10k	Hz
Driving voltage waveform		Sinusoidal		
Writing light optical wavelength	800		2000	nm
Writing light intensity	0.2		3.5	mW/cm ²
Working temperature	4		80	°C

HOASYS OASLM-NIR

^{**} Optimized response of the device is obtained for an applied AC Voltage with no DC component. Electrostatic or DC Voltage applied for several hours could damage permanently the device.